a human centric developer with a great passion for learning, creating, and upgrading
about me
expertise
Frontend Development
always focused on the end user, with working knowledge of React, Next.js, and more.
Machine Learning Research
commonly found scouring AI papers and implementing models in TensorFlow and Keras.
Data Analysis and Engineering
passionately curious, with plenty of experience in Python and a knack for pandas and numpy.
Software Engineering
from minecraft to mobile, several years of Java gave me a solid foundation in OOP.
projects
tap on a project to learn more!
professional experience
May 2022 to July 2022
ML Research Assistant
I participated in Vassar College's URSI (Undergraduate Research Summer Institute) where I worked on a project to use Machine Learning to predict the outcome of where a user is looking on a screen given webcam data. In this project, I...
- devised a research and development plan with my team, which brought forward my first experiences with collaborative programming, Git version control, and GitHub's hosting platform.
- developed in Python, using packages such as TensorFlow for the ML model, and OpenCV for webcam data; along with using JavaScript with JsPsych for desgining the experiments that would be disseminated over Prolific.
- architected a CNN embedding network with LSTM processing, along with our own custom ETL pipelines for processing data with google's MediaPipe for facial landmark demarkation.
- presented our final model to the URSI symposium with a poster detailing our research and findings creating a model with a mean distance error of 18%.
May 2023 to August 2023
ML Research Assistant
For this summer, I was able to continue my work from the previous summer's URSI, working on the exact same project but on a different team of 2 other students. This time, I...
- expanded on computer vision machine learning research conducted last summer, implementing various models such as Siamese Networks and Attention Mechanisms.
- fabricated ETL pipelines to process 1000+ participants' data in a Python package, allowing for modular and scalable data processing of various facial landmark points.
- utilized services such as wandb for hyperparameter tuning, finalizing a Siamese CNN embedding model with attention and a custom triplet loss function.
- similarly to last year, presented our final model with a poster to the URSI symposium, with a final model that reported a normalized euclidean distance error of 7.18%.
October 2023 to June 2024
CogSci Programmer
Employed under Vassar's Cognitive Science department, I advanced forward a diverse array of projects, underneath the same professor that I was with during URSI. While working, I...
- refocused efforts on eyetracking machine learning research, redocumented data processing pipelines and standardized processing of 5000+ video clips using OpenCV and MediaPipe.
- explored new research literature, implementing novel solutions in computer vision such as visual transformers and novel loss functions in Tensorflow and Keras.
- assisted in maintaining jsPsych, writing TypeScript production code, implemented features for plugins that are unit tested, based on GitHub issues and discussions.
- spearhead a modernization of Vassar College's turing machine simulator, updating a 7-year-old website to Next.js with modern React and Redux practices.
September 2024 to Present
Assistant Research Software Engineer
After my work in the cognitive science department, I was selected to work under a POSE (Pathways to Enable Open-Source Ecosystems) grant, focusing my efforts primarily on <b>jsPsych</b>, where I currently...
- maintain and develop jsPsych as the most recently promoted core maintainer, engaging in code review, merging pull requests, and spearheading the work on new features.
- implement said features into new plugins and core functionality of the library, such as developing a plugin to determine if a user is wearing headphones or not for an experiment.
- collaborate with the jsPsych community, expanding community outreach and engagement within the repository and on the documentation, emphasizing a contributor-user experience.
- revamp the jsPsych documentation, written in MkDocs, creating new tutorials and updating both old plugins and tutorials to the newest versioning of jsPsych.